Observing capture with a colloidal model membrane channel

Author:

Knowles Stuart FORCID,Fletcher Marcus,Mc Hugh Jeffrey,Earle Max,Keyser Ulrich F,Thorneywork Alice LORCID

Abstract

Abstract We use video microscopy to study the full capture process for colloidal particles transported through microfluidic channels by a pressure-driven flow. In particular, we obtain trajectories for particles as they move from the bulk into confinement, using these to map in detail the spatial velocity and concentration fields for a range of different flow velocities. Importantly, by changing the height profiles of our microfluidic devices, we consider systems for which flow profiles in the channel are the same, but flow fields in the reservoir differ with respect to the quasi-2D monolayer of particles. We find that velocity fields and profiles show qualitative agreement with numerical computations of pressure-driven fluid flow through the systems in the absence of particles, implying that in the regimes studied here particle-particle interactions do not strongly perturb the flow. Analysis of the particle flux through the channel indicates that changing the reservoir geometry leads to a change between long-range attraction of the particles to the pore and diffusion-to-capture-like behaviour, with concentration fields that show qualitative changes based on device geometry. Our results not only provide insight into design considerations for microfluidic devices, but also a foundation for experimental elucidation of the concept of a capture radius. This long standing problem plays a key role in transport models for biological channels and nanopore sensors.

Funder

Royal Society

National Physical Laboratory

Air Force Office of Scientific Research

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3