Abstract
Abstract
It is demonstrated that exact diagonalization of the microscopic many-body Hamiltonian via systematic full configuration-interaction (FCI) calculations is able to predict the spectra as a function of detuning of three-electron hybrid qubits based on GaAs asymmetric double quantum dots (QDs). It is further shown that, as a result of strong inter-electron correlations, these spectroscopic patterns, including avoided crossings between states associated with different electron occupancies of the left and right wells, are inextricably related to the formation of Wigner molecules (WMs). These physical entities cannot be captured by the previously employed independent-particle or Hubbard-type theoretical modeling of the hybrid qubit. We report remarkable agreement with recent experimental results. Moreover, the present FCI methodology for multi-well QDs can be straightforwardly extended to treat Si/SiGe hybrid qubits, where the central role of WMs was recently experimentally confirmed as well.
Funder
Air Force Office of Scientific Research
Subject
Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献