Abstract
Abstract
Sc5Rh6Sn18 with a cage-type quasiskutterudite crystal lattice and type II superconductivity, with superconducting transition temperature T
c = 4.99 K, was investigated under hydrostatic high-pressure (HP) using electrical transport, synchrotron x-ray diffraction (XRD) and Raman spectroscopy. Our data show that HP enhance the metallic nature and T
c of the system. T
c is found to show a continuous increase reaching to 5.24 K at 2.5 GPa. Although the system is metallic in nature, Raman spectroscopy investigations at ambient pressure revealed the presence of three weak modes at 165.97, 219.86 and 230.35 cm−1, mostly related to the rattling atom Sc. The HP-XRD data revealed that the cage structure was stable without any structural phase transition up to ∼7 GPa. The lattice parameters and volume exhibited a smooth decrease without any anomalies as a function of pressure in this pressure range. In particular, a second order Birch–Murnaghan equation of state can describe the pressure dependence of the unit cell volume well, yielding a bulk modulus of ∼97 GPa. HP Raman investigations revealed a linear shift of all the three Raman modes to higher wavenumbers with increasing pressure up to ∼8 GPa. As the pressure enhances the bond overlap, thus inducing more electronic charges into the system, HP-XRD and Raman results may indicate the possibility of obtaining higher T
c with increasing pressures in this pressure range.
Funder
CSIR
ICTP Programme for Training
ASEAN
JSPS
SERB
UGC
Subject
Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献