Bulk-surface coupling in dual topological insulator Bi1Te1 and Sb-doped Bi1Te1 single crystals via electron-phonon interaction

Author:

Mandal Shoubhik,Mallick Debarghya,Bitla Yugandhar,Ganesan R,Kumar P S AnilORCID

Abstract

Abstract Recently, B i 1 T e 1 has been proved to be a dual topological insulator (TI), a new subclass of symmetry-protected topological phases, and predicted to be higher order topological insulator (HOTI). Being a dual TI (DTI), Bi1Te1 is said to host quasi-1D surface states (SSs) due to weak TI phase and topological crystalline insulating SSs at the same time. On the other hand, HOTI supports topologically protected hinge states. So, B i 1 T e 1 is a unique platform to study the electrical signature of topological SS (TSS) of fundamentally different origins. Though there is a report of magneto-transport measurements on large-scale Bi1Te1 thin films, the Bi1Te1 single crystal is not studied experimentally to date. Even the doping effect in a DTI Bi1Te1 is missing in the literature. In this regard, we performed the perpendicular and parallel field magneto-transport measurement on the exfoliated microflake of Bi1Te1 and Sb-doped Bi1Te1 single crystals, grown by the modified Bridgmann method. Our metallic sample shows the weak anti-localization behavior analyzed by the multi-channel Hikami-Larkin-Nagaoka equation. We observed the presence of a pair of decoupled TSS. Further, we extracted the dephasing index (β) from temperature (T)-dependence of phase coherence length (L ϕ ), following the power law equation (L ϕ T β ). The thickness-dependent value of β indicates the transition in the dephasing mechanism from electron-electron to electron-phonon interaction with the increase in thickness, indicating the enhancement in the strength of bulk-surface coupling. Sb-doped system shows weakened bulk-surface coupling, hinted by the reduced dephasing indices.

Funder

Nanomission Council, DST

Ministry of Education, Govt. India

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3