Spin-valley-coupled quantum spin Hall insulator with topological Rashba-splitting edge states in Janus monolayer CSb1.5Bi1.5

Author:

Guo San-DongORCID,Zhu Yu-Tong

Abstract

Abstract Achieving combination of spin and valley polarized states with topological insulating phase is pregnant to promote the fantastic integration of topological physics, spintronics and valleytronics. In this work, a spin-valley-coupled quantum spin Hall insulator (svc-QSHI) is predicted in Janus monolayer CSb1.5Bi1.5 with dynamic, mechanical and thermal stabilities. Calculated results show that the CSb1.5Bi1.5 is a direct band gap semiconductor with and without spin–orbit coupling, and the conduction-band minimum and valence-band maximum are at valley point. The inequivalent valleys have opposite Berry curvature and spin moment, which can produce a spin-valley Hall effect. In the center of Brillouin zone, a Rashba-type spin splitting can be observed due to missing horizontal mirror symmetry. The topological characteristic of CSb1.5Bi1.5 is confirmed by the Z 2 invariant and topological protected conducting helical edge states. Moreover, the CSb1.5Bi1.5 shows unique Rashba-splitting edge states. Both energy band gap and spin-splitting at the valley point are larger than the thermal energy of room temperature (25 meV) with generalized gradient approximation level, which is very important at room temperature for device applications. It is proved that the spin-valley-coupling and nontrivial quantum spin Hall state are robust again biaxial strain. Our work may provide a new platform to achieve integration of topological physics, spintronics and valleytronics.

Funder

Natural Science Basis Research Plan in Shaanxi Province of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3