Revisiting the Kittel’s model of antiferroelectricity: phase diagrams, hysteresis loops and electrocaloric effect

Author:

Lum C YORCID,Lim K-G,Chew K-HORCID

Abstract

Abstract We revisit the Kittel’s model of antiferroelectricity by extending the model to study the phase transitions, hysteresis loop behaviors and electrocaloric effect (ECE) of antiferroelectrics (AFEs). By considering both the first- and second-order AFEs, explicit expressions for the physical and staggered polarizations of AFEs in the stable states are derived. We also obtain the analytical solutions for describing the dielectric susceptibilities of AFEs in the AFE and paraelectric (PE) phases. Coercive fields in AFE are also derived and studied. To verify the usefulness of the Kittel’s model of antiferroelectricity, we apply the model to systematically investigate the phase transitions, hysteresis loops and ECEs of PbZrO3 (PZO). By adopting appropriate values of the Kittel’s parameters for first-order transition, analytical and numerical results are obtained and discussed. Our results show that PZO exhibits a complex temperature (T)—electric field (E) phase diagram, consisting of the AFE, ferroelectrics, ferrielectric, PE and mixed phases. The T-E phase diagram is qualitatively agreed with the new AFE model that was derived based on symmetry by Tolédano and Khalyavin (2019 Phys. Rev. B 99 024105). We found that the calculated zero-field dielectric susceptibility is qualitatively and quantitatively agreed with experimental results. We show that the polarizations and dielectric susceptibilities of PZO in heating and cooling deviate from each other, as expected for the first-order materials. Our calculated results also reveal that the ECE in PZO has an electro-heating of ΔT ≈ +6.5 °C and an electro-cooling of ΔT ≈ −4.0 °C, respectively, which are comparable to the experimental results.

Funder

MyBrain15 under Ministry of Higher Education Malaysia

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3