Abstract
Abstract
The structural stability and physical properties of CrVO4 under compression were studied by x-ray diffraction, Raman spectroscopy, optical absorption, resistivity measurements, and ab initio calculations up to 10 GPa. High-pressure x-ray diffraction and Raman measurements show that CrVO4 undergoes a phase transition from the ambient pressure orthorhombic CrVO4-type structure (Cmcm space group, phase III) to the high-pressure monoclinic CrVO4-V phase, which is proposed to be isomorphic to the wolframite structure. Such a phase transition (CrVO4-type → wolframite), driven by pressure, also was previously observed in indium vanadate. The crystal structure of both phases and the pressure dependence in unit-cell parameters, Raman-active modes, resistivity, and electronic band gap, are reported. Vanadium atoms are sixth-fold coordinated in the wolframite phase, which is related to the collapse in the volume at the phase transition. Besides, we also observed drastic changes in the phonon spectrum, a drop of the band-gap, and a sharp decrease of resistivity. All the observed phenomena are explained with the help of first-principles calculations.
Funder
IPICYT Supercomputing National Center for Education & Research
Ministry of Science, Innovation and Universities
Ramón y Cajal program
Generalitat Valenciana
Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California
Knut och Alice Wallenbergs Stiftelse
Kempestiftelserna
Subject
Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献