Molecular dynamics simulations of structural and dynamical aspects of DNA hydration water

Author:

Netz Paulo AORCID

Abstract

Abstract Water is a remarkable liquid, both because of it is intriguing but also because of its importance. Water plays a key role on the structure and function of biological molecules, but on the other hand also the structure and dynamics of water are deeply influenced by its interactions with biological molecules, specially at low temperatures, where water’s anomalies are enhanced. Here we present extensive molecular dynamics simulations of water hydrating a oligonucleotide down to very low temperatures (supercooled water), comparing four water models and analyzing the water structure and dynamics in different domains: water in the minor groove, water in the major groove and bulk water. We found that the water in the grooves is slowed down by the interactions with the nucleic acid and a hints of a dynamic transition regarding translational and orientational dynamics were found, specially for the water models TIP4P/2005 and TIP4P-Ew, which also showed the closest agreement with available experimental data. The behavior of water in such extreme conditions is relevant for the study of cryopreservation of biological tissues.

Funder

Universidade Federal do Rio Grande do Sul

CAPES

Centro Nacional de Supercomputa

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue on soft matter research in Latin America;Journal of Physics: Condensed Matter;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3