Activation energy, spatial confinement, and mean first passage and escape times of a tracer in a wormlike micellar fluid: an effective potential approach

Author:

Guerrero-García Guillermo IvánORCID,Pérez-Guerrero Daniela,Sarmiento Gómez ErickORCID

Abstract

Abstract Wormlike micelles are long semiflexible cylindrical polymer structures formed by amphiphiles. In solution, these linear micelles percolate in multiconected entangled networks, where cross-links can break and recombine dynamically. Technological applications of wormlike micellar fluids include tunable encapsulation/delivery of molecules or colloids in biomedicine, oil industry, and/or cleaning processes. In this work, we propose that the experimental activation energy, the spatial confinement, and the mean first passage and escape times of a spherical tracer immersed in wormlike micellar network, in which caging effects are observed, can be estimated from economic Brownian dynamics simulations of a single particle interacting with an effective one-dimensional cosine-like potential of amplitude U 0 and periodicity L. The proposed one-fitting parameter method has been used to characterize the long-time dynamics of wormlike micellar solutions formed by the self-assembly of a mixture of zwitterionic and anionic surfactants at several temperatures and different concentrations of surfactant and brine. The amplitude U 0 has displayed a good agreement regarding the corresponding experimental activation energy at different temperatures. The periodicity L has shown to be an upper bound of the mesh size ξ and of the same order of magnitude regarding the entanglement length l e, obtained from rheology and microrheology experiments. The escape time of the tracer in the effective potential τ escape and the time t*, at which a change of curvature in the mean square displacement occurs, are upper and lower limits, respectively, of the experimental relaxation time. Our method is simple and fast, and we foresee that it should be applicable to model the long-time behaviour of tracers in other polymer systems, in which caging effects are present.

Funder

CONACYT

National Supercomputing Center-IPICYT

Marcos Moshinsky Fellowship

LANCAD

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue on soft matter research in Latin America;Journal of Physics: Condensed Matter;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3