Two-dimensional localization in GeSn

Author:

Gul YORCID,Holmes S NORCID,Cho Chang-WooORCID,Piot B,Myronov MORCID,Pepper MORCID

Abstract

Abstract Localization behaviour is a characteristic feature of the p-type GeSn quantum well (QW) system in a metal–insulator–semiconductor device. The transition to strongly localized behaviour is abrupt with thermally activated conductivity and a high temperature intercept of 0.12 × e 2 ħ −1 at a hole carrier density 1.55 × 1011 cm−2. The activation energy for the conductivity in the localized state is 0.40 ± 0.05 meV compared to an activation energy of ∼0.1 meV for conductivity activation to a mobility edge at carrier densities >1.55 × 1011 cm−2. Insulating behaviour can occur from a system that behaves as though it is in a minimum metallic state, albeit at high temperature, or from a conductivity greater than a minimum metallic state behaviour showing that local disorder conditions with local differences in the density of states are important for the onset of localization. In the presence of a high magnetic field, thermally activated conductivity is present down to Landau level filling factor < 1 / 2 but without a magnetic-field-dependent carrier density or a variable range hopping (VRH) transport behaviour developing even with conductivity ≪e 2 h −1. In the localized transport regime in p-type doped Ge0.92Sn0.08 QWs the VRH mechanism is suppressed at temperatures >100 mK and this makes this two-dimensional system ideal for future many body localization studies in disordered hole gases that can be thermally isolated from a temperature reservoir.

Funder

European Magnetic Field Laboratory

EPSRC

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3