Predicting defect stability and annealing kinetics in two-dimensional PtSe2 using steepest entropy ascent quantum thermodynamics

Author:

Younis Aimen,Baniasadi Fazel,von Spakovsky Michael RORCID,Reynolds Jr William TORCID

Abstract

Abstract The steepest-entropy-ascent quantum thermodynamic (SEAQT) framework was used to calculate the stability of a collection of point defects in 2D PtSe2 and predict the kinetics with which defects rearrange during thermal annealing. The framework provides a non-equilibrium, ensemble-based framework with a self-consistent link between mechanics (both quantum and classical) and thermodynamics. It employs an equation of motion derived from the principle of steepest entropy ascent (maximum entropy production) to predict the time evolution of a set of occupation probabilities that define the states of a system undergoing a non-equilibrium process. The system is described by a degenerate energy landscape of eigenvalues, and the entropy is found from the occupation probabilities and the eigenlevel degeneracies. Scanning tunneling microscopy was used to identify the structure and distribution of point defects observed experimentally in a 2D PtSe2 film. A catalog of observed defects includes six unique point defects (vacancies and anti-site defects on Pt and Se sublattices) and twenty combinations of multiple point defects in close proximity. The defect energies were estimated with density functional theory, while the degeneracies, or density of states, for the 2D film with all possible combinations or arrangements of cataloged defects was constructed using a non-Markovian Monte-Carlo approach (i.e. the Replica–Exchange–Wang–Landau algorithm (Vogel et al 2013 Phys. Rev. Lett. 110 210603)) with a q-state Potts model. The energy landscape and associated degeneracies were determined for a 2D PtSe2 film two molecules thick and 30 × 30 unit cells in area (total of 5400 atoms). The SEAQT equation of motion was applied to the energy landscape to determine how an arbitrary density and arrangement of the six defect types evolve during annealing. Two annealing processes were modeled: heating from 77 K (−196  C) to 523 K (250 C) and isothermal annealing at 523 K. The SEAQT framework predicted defect configurations, which were consistent with experimental STM images.

Funder

Virginia Polytechnic Institute and State University

Institute for Critical Technologies and Applied Science, Virginia Tech

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3