Abstract
Abstract
We present the ab-initio temperature and pressure dependent thermoelastic properties of body-centered cubic tungsten. The temperature dependent quasi-harmonic elastic constants (ECs) are computed at several reference volumes including both the phonon and the electronic excitations contribution to the free energy and interpolated at different temperatures and pressures. Good agreement with the experimental ECs on a single crystal at ambient pressure is found. The pressure and temperature dependence of the shear sound velocity measured on polycrystalline tungsten by Qi et al is also in agreement with theory. Some discrepancies are found instead for the compressional velocity at high temperature and this is attributed to the temperature derivative of the bulk modulus, higher in theory than in experiment. These conclusions are reached both by PBE and by PBEsol functionals. The two give elastic properties with a similar pressure and temperature dependence although the latter is closer to experiment at 0 K.
Funder
MAX “MAterials design at the eXascale” Centre of Excellence for Supercomputing
National Centre for HPC, Big Data, and Quantum Computing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献