Topological electrostatics

Author:

Douçot B,Moessner R,Kovrizhin D L

Abstract

AbstractWe present a theory of optimal topological textures in nonlinear sigma-models with degrees of freedom living in the GrassmannianGr(M,N)manifold. These textures describe skyrmion lattices ofN-component fermions in a quantising magnetic field, relevant to the physics of graphene, bilayer and other multicomponent quantum Hall systems near integer filling factorsν > 1. We derive analytically the optimality condition, minimizing topological charge density fluctuations, for a general Grassmannian sigma modelGr(M,N)on a sphere and a torus, together with counting arguments which show that for any filling factor and number of components there is a critical value of topological chargedcabove which there are no optimal textures. Belowdca solution of the optimality condition on a torus is unique, while in the case of a sphere one has, in general, a continuum of solutions corresponding to new non-Goldstone zero modes, whose degeneracy is not lifted (via a order from disorder mechanism) by any fermion interactions depending only on the distance on a sphere. We supplement our general theoretical considerations with the exact analytical results for the case ofGr(2,4), appropriate for recent experiments in graphene.

Funder

Labex

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference41 articles.

1. Stability of classical solutions;Bogomolny;Sov. J. Nucl. Phys.,1976

2. Exact classical solution for the’t Hooft monopole and the Julia-Zee dyon;Prasad;Phys. Rev. Lett.,1975

3. The quantum Hall effect: novel excitations and broken symmetries;Girvin,1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Issue on Solitons in Quantum Physics;Journal of Physics: Condensed Matter;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3