Structural phases of classical 2D clusters with competing two-body and three-body interactions

Author:

Correia Matheus VORCID,Freitas Emerson JORCID,Cabral Leonardo R EORCID,de Souza Silva Clécio CORCID

Abstract

Abstract In modeling systems of interacting particles, many-body terms beyond pairwise interactions are often overlooked. Nevertheless, in certain scenarios, even small contributions from three-body or higher-order terms can disrupt significant changes in their collective behavior. Here we investigate the effects of three-body interactions on the structure and stability of 2D, harmonically confined clusters. We consider clusters with three distinct pairwise interactions: log r , 1 / r , and e κ r / r , thus covering a wide range of condensed and soft matter systems, such as vortices in mesoscopic superconductors, charged colloids, and dusty plasma. In each case, we evaluate the energetics and normal mode spectra of equilibrium and metastable configurations as the intensity of an attractive, Gaussian three-body potential is varied. We demonstrate that, above a threshold value of the three-body energy strength, the cluster shrinks and eventually becomes self-sustained, that is, it remains cohesive after the confinement potential is shut down. Depending on the strengths of the two-body and three-body interaction terms, this compaction can be continuous or abrupt. The latter case is characterized by a discontinuous jump in the particle density and coexsitence of the compact and non-compact phases as metastable states, as in a first-order phase transition. For some values of the particle number, the compaction is preceded by one or more structural changes, resulting in configurations not usually seen in purely pairwise-additive clusters.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3