Emergent weak antilocalization and wide-temperature-range electronic phase diagram in epitaxial RuO2 thin film

Author:

Liu JinORCID,Gao Lei,Zou Yu Ting,Lin Ting,Zhu Ming Tong,Lyu Xiang Yu,Lu Chao,Wang Yu Qian,Ji Ai LingORCID,Zhang Qing Hua,Cheng Zhi Gang,Gu Lin,Cao Ze Xian,Lu Nian PengORCID

Abstract

Abstract Binary ruthenium dioxide (RuO2) has gradually attracted much attention in condensed matter physics and material sciences due to its various intriguing physical properties, such as strain-induced superconductivity, anomalous Hall effect, collinear anti-ferromagnetism, etc. However, its complex emergent electronic states and the corresponding phase diagram over a wide temperature range remain unexplored, which is critically important to understanding the underlying physics and exploring its final physical properties and functionalities. Here, through optimizing the growth conditions by using versatile pulsed laser deposition, high-quality epitaxial RuO2 thin films with clear lattice structure are obtained, upon which the electronic transport is investigated, and emergent electronic states and the relevant physical properties are unveiled. Firstly, at a high-temperature range, it is the Bloch–Grüneisen state, instead of the common Fermi liquid metallic state, that dominates the electrical transport behavior. Moreover, the recently reported anomalous Hall effect is also revealed, which confirms the presence of the Berry phase in the energy band structure. More excitingly, we find that above the superconductivity transition temperature, a new positive magnetic resistance quantum coherent state with an unusual dip as well as an angel-dependent critical magnetic field emerges, which can be attributed to the weak antilocalization effect. Lastly, the complex phase diagram with multiple intriguing emergent electronic states over a wide temperature range is mapped. The results greatly promote the fundamental physics understanding of the binary oxide RuO2 and provide guidelines for its practical applications and functionalities.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on spin-split antiferromagnetic spintronics;Applied Physics Letters;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3