Surface functionalization of graphene-like boron arsenide monolayer: a first-principles study

Author:

Khanh Nguyen Duy,Ponce-Pérez R,Guerrero-Sanchez J,Hoat D MORCID

Abstract

Abstract In this work, the effects of hydrogen (H) and oxygen (O) adsorption on the electronic and magnetic properties of graphene-like boron arsenide (BAs) monolayer are investigated using first-principles calculations. Pristine monolayer is a non-magnetic two-dimensional (2D) material, exhibiting direct gap semiconductor character with band gap of 0.75 (1.18) eV as calculated by generalized gradient approximation with Perdew–Burke–Ernzerhof (HSE06) functional. Four high-symmetry adsorption sites are considered, including on-top of B atom ( T B ), on-top of As atom ( T A s ), on-top of hollow site ( T H ), and on-top of bridge site ( T b r i d g e ). Using the criterion of adsorption energy, it is found that T B and T b r i d g e sites are favorable adsorption sites for H and O adatom, respectively. The analysis of electronic interactions indicate the charge transfer from host BAs monolayer to both adatoms. H adsorption conducts to the emergence of magnetic semiconductor nature in BAs monolayer with a total magnetic moment of 1.00  μ B . Herein, the magnetism is originated mainly from H adatom and its neighbor As atoms. In contrast, the non-magnetic nature of BAs monolayer is preserved upon absorbing O atoms. In this case, the energy gap exhibits a slight reduction of 4%. Further, the effects of adatom coverage are also analyzed. The presented results suggest an effective modification of ground state electronic properties, as well as induction of new feature-rich properties to make new multifunctional 2D materials from non-magnetic BAs monolayer.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3