Tight-binding studies of uniaxial strain in T-graphene nanoribbons

Author:

Hopkinson J,Hancock YORCID

Abstract

Abstract The role of uniaxial strain in armchair, T-graphene nanoribbons (ATGNRs) with symmetric and asymmetric structures is investigated using a nearest-neighbour, tight-binding (TB) model. ATGNRs with structural symmetry and two a sub-lattice structure exhibit Dirac points at zero strain. Application of uniaxial strain to these systems induces multiple Dirac points under compression (up to −20% strain), with the number of these points commensurate with the number of tetra-carbon base-units along the width of the unit cell, accounting also for the mirror symmetry of the structure. Under tensile, uniaxial strain (up to 20% extension), the induced asymmetry in the carbon tetrabond results in the number of Dirac points being reduced, although a minimum number are preserved due to the fundamental mirror-symmetry of the symmetric ATGNR. Asymmetric ATGNRs, which are semiconductors, are shown to have tunable band-gaps that decrease as a function of increasing ribbon width and uniaxial strain. Uniaxial strain induces a single Dirac point at the band edge of these systems under high compression ( $?> > 16%), with the closing of the band gap linked to symmetry-induced perturbations in the structure that override the symmetry-breaking, gap-opening mechanisms. In summary, the TB model shows ATGNRs to have suitable device features for flexible electronics applications, such as band-gap tuning, and for the strain engineering of relativistic properties.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3