Linear response theories for interatomic exchange interactions

Author:

Solovyev I VORCID

Abstract

Abstract The linear response is a perturbation theory establishing the relationship between given physical variable and the external field inducing this variable. A well-known example of the linear response theory in magnetism is the susceptibility relating the magnetization with the magnetic field. In 1987, Liechtenstein et al came up with the idea to formulate the problem of interatomic exchange interactions, which would describe the energy change caused by the infinitesimal rotations of spins, in terms of this susceptibility. The formulation appears to be very generic and, for isotropic systems, expresses the energy change in the form of the Heisenberg model, irrespectively on which microscopic mechanism stands behind the interaction parameters. Moreover, this approach establishes the relationship between the exchange interactions and the electronic structure obtained, for instance, in the first-principles calculations based on the density functional theory. The purpose of this review is to elaborate basic ideas of the linear response theories for the exchange interactions as well as more recent developments. The special attention is paid to the approximations underlying the original method of Liechtenstein et al in comparison with its more recent and more rigorous extensions, the roles of the on-site Coulomb interactions and the ligand states, and calculations of antisymmetric Dzyaloshinskii–Moriya interactions, which can be performed alongside with the isotropic exchange, within one computational scheme. The abilities of the linear response theories as well as many theoretical nuances, which may arise in the analysis of interatomic exchange interactions, are illustrated on magnetic van der Walls materials CrX 3 ( X = Cl, I), half-metallic ferromagnet CrO2, ferromagnetic Weyl semimetal Co3Sn2S2, and orthorhombic manganites AMnO3 ( A = La, Ho), known for the peculiar interplay of the lattice distortion, spin, and orbital ordering.

Funder

World Premier International Research Center Initiative (WPI), MEXT, Japan

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3