Spoof surface plasmonics: principle, design, and applications

Author:

Cheng Zhang WenORCID,Wang MengORCID,You Zi Hua,Ma Hui FengORCID,Cui Tie JunORCID

Abstract

Abstract Surface plasmon polaritons (SPPs) are interactions between incident electromagnetic waves and free electrons on the metal–dielectric interface in the optical regime. To mimic SPPs in the microwave frequency, spoof SPPs (SSPPs) on ultrathin and flexible corrugated metallic strips were proposed and designed, which also inherit the advantages of lightweight, conformal, low profile, and easy integration with the traditional microwave circuits. In this paper, we review the recent development of SSPPs, including the basic concept, design principle, and applications along with the development from unwieldy waveguides to ultrathin transmission lines. The design schemes from passive and active devices to SSPP systems are presented respectively. For the passive SSPP devices, the related applications including filters, splitters, combiners, couplers, topological SSPPs, and radiations introduced. For the active SSPP devices, from the perspectives of transmission and radiation, we present a series of active SSPP devices with diversity and flexibility, including filtering, amplification, attenuation, nonlinearity, and leaky-wave radiations. Finally, several microwave systems based on SSPPs are reported, showing their unique advantages. The future directions and potential applications of the ultra-thin SSPP structures in the microwave and millimeter-wave regions are discussed.

Funder

Six Talent Peaks Project

111 Project

National Natural Science Foundation of China

Research and Development Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3