Fermi level fluctuations, reduced effective masses and Zeeman effect during quantum oscillations in nodal line semimetals

Author:

Kar SatyakiORCID,Saha Anupam

Abstract

Abstract We probe quantum oscillations in nodal line semimetals (NLSM) by considering an NLSM continuum model under strong magnetic field and report the characteristics of the Landau level (LL) spectra and the fluctuations in the Fermi level as the field in a direction perpendicular to the nodal plane is varied through. Based on the results on parallel magnetization, we demonstrate the growth of quantum oscillation with field strength as well as its constancy in period when plotted against 1/B. We find that the density of states (DOS) which show series of peaks in succession, witness bifurcation of those peaks due to Zeeman effect. For field normal to nodal plane, such bifurcations are discernible only if the electron effective mass is considerably smaller than its free value, which usually happens in these systems. Though a reduced effective mass m* causes the Zeeman splitting to become small compared to LL spacings, experimental results indicate a manifold increase in the Lande g factor which again amplifies the Zeeman contribution. We also consider magnetic field in the nodal plane for which the DOS peaks do not repeat periodically with energy anymore. The spectra become more spread out and the Zeeman splittings become less prominent. We find the low energy topological regime, that appears with such in-plane field set up, to shrink further with reduced m* values. However, such topological regime can be stretched out in case there are smaller Fermi velocities for electrons in the direction normal to the nodal plane.

Funder

Government of India

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3