Abstract
Abstract
Within recent developments of density functional theory, its numerical implementation and of the superconducting density functional theory is nowadays possible to predict the superconducting critical temperature,
, with sufficient accuracy to anticipate the experimental verification. In this paper we present an analytical derivation of the isotope coefficient within the superconducting density functional theory. We calculate the partial derivative of
with respect to atomic masses. We verified the final expression by means of numerical calculations of isotope coefficient in monatomic superconductors (Pb) as well as polyatomic superconductors (CaC6). The results confirm the validity of the analytical derivation with respect to the finite difference methods, with considerable improvement in terms of computational time and calculation accuracy. Once the critical temperature is calculated (at the reference mass(es)), various isotope exponents can be simply obtained in the same run. In addition, we provide the expression of interesting quantities like partial derivatives of the deformation potential, phonon frequencies and eigenvectors with respect to atomic masses, which can be useful for other derivations and applications.
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献