Abstract
Abstract
We explore the application of a two-step growth protocol to a one-dimensional colloidal model. The evolution of the system is described in terms of the time-dependence of both monomer and island densities, N
1 and N, while its structure is characterized by using distributions of the gap length, the capture zone, the inter-island distance, and the island length. Analytical results obtained from rate equations are compared with these from molecular dynamics simulations. Since the two-step growth protocol deals with nucleation and aggregation processes in two completely separated time regimes, it makes possible to gain better understanding and control on the island formation mechanism than the standard one-step protocol. The predicted features and advantages of the two-step process could be experimentally tested using deposition of colloidal spheres on pattern substrates.
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献