Dynamical effective field model for interacting ferrofluids: II. The proper relaxation time and effects of dynamic correlations

Author:

Fang AngboORCID

Abstract

Abstract The recently proposed dynamical effective field model (DEFM) is quantitatively accurate for ferrofluid dynamics. It is derived in paper I within the framework of dynamical density functional theory (DDFT) along with a phenomenological description of nonadiabatic effects. However, it remains to clarify how the characteristic rotational relaxation time of a dressed particle, denoted by τ r , is quantitatively related to that of a bare particle, denoted by τ r 0 . By building macro-micro connections via two different routes, I reveal that under some gentle assumptions τ r can be identified with the mean time characterizing long-time rotational self-diffusion. I further introduce two simple but useful integrated correlation factors, describing the effects of quasi-static (adiabatic) and dynamic (nonadiabatic) inter-particle correlations, respectively. In terms of both the dynamic magnetic susceptibility is expressed in an illuminating and elegant form. Remarkably, it shows that the macro-micro connection is established via two successive steps: a dynamical coarse-graining with nonadiabatic effects accounted for by the dynamic factor, followed by equilibrium ensemble averaging captured by the static factor. By analyzing data from Brownian dynamics simulations on monodisperse interacting ferrofluids, I find τ r / τ r 0 is, somehow unexpectedly, insensitive to changes of particle volume fraction. A physical picture is proposed to explain it. Furthermore, an empirical formula is proposed to characterize the dependence of τ r / τ r 0 on dipole-dipole interaction strength. The DEFM supplemented with this formula leads to parameter-free predictions in good agreement with results from Brownian dynamics simulations. The theoretical developments presented in this paper may have important consequences to studies of ferrofluid dynamics in particular and other systems modeled by DDFTs in general.

Funder

North China University of Water Resources and Electric Power

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3