Effects of metallic electrodes on the thermoelectric properties of zigzag graphene nanoribbons with periodic vacancies

Author:

Kuo David M TORCID

Abstract

Abstract We theoretically analyze the thermoelectric properties of graphene quantum dot arrays (GQDAs) with line- or surface-contacted metal electrodes. Such GQDAs are realized as zigzag graphene nanoribbons (ZGNRs) with periodic vacancies. Gaps and minibands are formed in these GQDAs, which can have metallic and semiconducting phases. The electronic states of the first conduction (valence) miniband with nonlinear dispersion may have long coherent lengths along the zigzag edge direction. With line-contacted metal electrodes, the GQDAs have the characteristics of serially coupled quantum dots (SCQDs) if the armchair edge atoms of the ZGNRs are coupled to the electrodes. By contrast, the GQDAs have the characteristics of parallel quantum dots if the zigzag edge atoms are coupled to the electrodes. The maximum thermoelectric power factors of SCQDs with line-contacted electrodes of Cu, Au, Pt, Pd, or Ti at room temperature were similar or greater than 0.186 nW K−1; their figures of merit were greater than three. GQDAs with line-contacted metal electrodes have much better thermoelectric performance than surface contacted metal electrodes.

Funder

Ministry of Science and Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3