Linear interband optical refraction and absorption in strained black phosphorene

Author:

Yarmohammadi MORCID,Mortezaei Nobahari MORCID,Tien T SORCID,Phuong L T TORCID

Abstract

Abstract Strain effects have been widely addressed in monolayer black phosphorus (MBP) due to its significant influence on the orbital hybridization of atoms. In this theoretical contribution, we use the tight-binding model, the Harrison rule and the Kubo formula to describe the optical refraction and absorption of MBP in detail. The analytical study of the band gap in strained MBP demonstrates electronic phase transitions from semiconductor-to-semimetal/metal and semiconductor-to-insulator, in which both the compressive and tensile strains act linearly on the band gap alterations. The critical strains corresponding to these phase transitions are fully characterized as well. Our calculations show that the variation of the refraction inflections and absorption peaks depends on the strained band gap, however; the band gap changes under out-of-plane strains are different than the in-plane ones. The conditions under which this discrepancy is significant and/or negligible are investigated. Moreover, the dedication of minimal/maximal optical refraction and/or absorption in MBP to both in-plane and out-of-plane strains are fully addressed. Our theoretical results clarify the strain-induced interplay between the band gap and optical properties to propose a wide range of applications in nano-optoelectronics.

Funder

National Foundation for Science and Technology Development

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3