Pressure-induced electrides and metallic phases in the Y–Cl system

Author:

Yu HuleiORCID,Chen YueORCID

Abstract

Abstract Pressure can profoundly change the electronic structure, leading to the formation of new phases and materials with exotic properties. Herein, using evolutionary algorithms and density functional theory, we systematically investigate the behaviour of materials in the yttrium–chlorine binary system under pressure. Electrons are found to be spatially confined at low pressures in yttrium chlorides and tend to form new electrides. In particular, a novel yttrium chloride, Y3Cl2, is predicted to be thermodynamically and lattice dynamically stable at approximately 10 GPa. Further analyses of the electron localization function and partial charge density identify trigonal Y3Cl2 as a new 2D high-pressure electride with partially localized electrons contributing to the conduction. By further increasing the pressure, electrons in the yttrium–chlorine binary system tend to delocalize with the electrides decomposing into two new compounds (Y2Cl and YCl2) and a new YCl phase (space group P63/mmc) above 20 GPa. These newly discovered phases are all metallic in their stable pressure range according to band structure simulations without interstitial electron localization. The discovery of these unconventional yttrium chlorides may inspire strategies to search for low-pressure electrides in other rare-earth halogenide systems.

Funder

Research Grants Council, University Grants Committee

Environment and Conservation Fund

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3