Abstract
Abstract
Pressure can profoundly change the electronic structure, leading to the formation of new phases and materials with exotic properties. Herein, using evolutionary algorithms and density functional theory, we systematically investigate the behaviour of materials in the yttrium–chlorine binary system under pressure. Electrons are found to be spatially confined at low pressures in yttrium chlorides and tend to form new electrides. In particular, a novel yttrium chloride, Y3Cl2, is predicted to be thermodynamically and lattice dynamically stable at approximately 10 GPa. Further analyses of the electron localization function and partial charge density identify trigonal Y3Cl2 as a new 2D high-pressure electride with partially localized electrons contributing to the conduction. By further increasing the pressure, electrons in the yttrium–chlorine binary system tend to delocalize with the electrides decomposing into two new compounds (Y2Cl and YCl2) and a new YCl phase (space group P63/mmc) above 20 GPa. These newly discovered phases are all metallic in their stable pressure range according to band structure simulations without interstitial electron localization. The discovery of these unconventional yttrium chlorides may inspire strategies to search for low-pressure electrides in other rare-earth halogenide systems.
Funder
Research Grants Council, University Grants Committee
Environment and Conservation Fund
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献