Spin-orbital entangled state and realization of Kitaev physics in 3d cobalt compounds: a progress report

Author:

Kim ChaebinORCID,Kim Heung-SikORCID,Park Je-GeunORCID

Abstract

Abstract The realization of Kitaev’s honeycomb magnetic model in real materials has become one of the most pursued topics in condensed matter physics and materials science. If found, it is expected to host exotic quantum phases of matter and offers potential realizations of fault-tolerant quantum computations. Over the past years, much effort has been made on 4d- or 5d-heavy transition metal compounds because of their intrinsic strong spin–orbit coupling. But more recently, there have been growing shreds of evidence that the Kitaev model could also be realized in 3d-transition metal systems with much weaker spin–orbit coupling. This review intends to serve as a guide to this fast-developing field focusing on systems with d 7 transition metal occupation. It overviews the current theoretical and experimental progress on realizing the Kitaev model in those systems. We examine the recent experimental observations of candidate materials with Co2+ ions: e.g., CoPS3, Na3Co2SbO6, and Na2Co2TeO6, followed by a brief review of theoretical backgrounds. We conclude this article by comparing experimental observations with density functional theory calculations. We stress the importance of inter-t 2g hopping channels and Hund’s coupling in the realization of Kitaev interactions in Co-based compounds, which has been overlooked in previous studies. This review suggests future directions in the search for Kitaev physics in 3d cobalt compounds and beyond.

Funder

Basic Science Research Program

Leading Researcher Program of Korea’s National Research Foundation

National Supercomputing Center of Korea

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3