Porous amorphous nitinol synthesized by argon injection: a molecular dynamics study

Author:

Tsygankov A AORCID,Galimzyanov B NORCID,Mokshin A VORCID

Abstract

Abstract Porous crystalline nitinol is widely applied in various fields of science and technology due to the unique combination of physical and mechanical properties as well as biocompatibility. Porous amorphous nitinol is characterized by improved mechanical properties compared to its crystalline analogues. Moreover, this material is more promising from the point of view of fundamental study and practical application. The production of porous amorphous nitinol is a difficult task requiring rapid cooling protocol and optimal conditions to form a stable porous structure. In the present work, based on the results of molecular dynamics simulations, we show that porous nitinol with the amorphous matrix can be obtained by injection of argon into a liquid melt followed by rapid cooling of the resulting mixture. We find that the porosity of the system increases exponentially with increasing fraction of injected argon. It has been established that the system should contain about 18 % –23% argon for obtain an open porous structure, while the system is destroyed by overheated inert gas when the argon fraction is more than 23 %. It is shown that the method of argon injection makes it possible to obtain a highly porous system with the porosity 70 % consisting the spongy porous structure similar to aerogels and metallic foams.

Funder

Russian Science Foundation

Foundation for the Advancement of Theoretical Physics and Mathematics

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3