Computational analysis of the optical response of ZnSe with d-orbital defects

Author:

Pike Nicholas AORCID,Pachter RuthORCID,Martinez Alan D,Cook GaryORCID

Abstract

Abstract The doping of wide band-gap semiconducting ZnSe by transition metal (TM) atoms finds applications from mid-infrared lasing, sensing, photoelectrochemical cells, to nonlinear optics. Yet understanding the response of these materials at the atomic and electronic level is lacking, particularly in comparing a range of TM dopants, which were studied primarily by phenomenological crystal-field theory. In this work, to investigate bulk ZnSe singly doped with first-row TM atoms, specifically Ti through Cu, we applied a first-principles approach and crystal-field theory to explain the origin of the infrared absorption. We show that the use of an appropriate exchange–correlation functional and a Hubbard U correction to account for electron correlation improved the determination of the electronic transitions in these systems. We outline an approach for the calculation of the crystal-field splitting from first-principles and find it useful in providing a measure of dopant effects, also in qualitative comparison to our experimental characterization for ZnSe doped with Fe, Cr, and Ni. Our calculated absorption spectra indicate absorption signatures in the mid-infrared range, while the absorption in the visible portion of the spectrum is attributed to the ZnSe host. Our calculations will potentially motivate further experimental exploration of TM-doped ZnSe. Finally, the methods used here provide a route towards computational high-throughput screening of TM dopants in III–V materials through a combination of the electronic band structure and crystal-field theory.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3