Exact eigenvectors and eigenvalues of the finite Kitaev chain and its topological properties

Author:

Leumer Nico,Marganska MagdalenaORCID,Muralidharan BhaskaranORCID,Grifoni Milena

Abstract

Abstract We present a comprehensive, analytical treatment of the finite Kitaev chain for arbitrary chemical potential and chain length. By means of an exact analytical diagonalization in the real space, we derive the momentum quantization conditions and present exact analytical formulas for the resulting energy spectrum and eigenstate wave functions, encompassing boundary and bulk states. In accordance with an analysis based on the winding number topological invariant, and as expected from the bulk-edge correspondence, the boundary states are topological in nature. They can have zero, exponentially small or even finite energy. Further, for a fixed value of the chemical potential, their properties are ruled by the ratio of the decay length to the chain length. A numerical analysis confirms the robustness of the topological states against disorder.

Funder

Elitenetzwerk Bayern

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3