Abstract
Abstract
Oxygen vacancy is one of the original mechanisms of the two-dimensional electron gas (2DEG) at the LaAlO3 (LAO) and SrTiO3 (STO) heterogeneous interface, and it has an important impact on the electrical properties of LAO/STO heterojunction. In this work, the LAO thin films were grown on the STO substrates by pulsed laser deposition, and the electrical transport behavior of the LAO/STO interface at high temperature and high vacuum were systematically studied. It was found that at high temperature and high vacuum, the oxygen vacancies-rich LAO/STO heterojunction would undergo a metal–insulator transition, and return to metal conductivity when the temperature is further increased. At this time, the conduction mechanism of the sample is drift mode and the thermal activation energy is 0.87 eV. While during the temperature decreasing, the conduction mechanism would transfer to hopping conduction with the thermal activation energy of 0.014 eV and the resistance would increase dramatically and present a completely insulated state. However, when the oxygen vacancies-rich sample is exposed to air, the resistance would gradually decrease and recover.
Funder
Key Research Project of the Natural Science Foundation of Shaanxi Province, China
Natural Science Foundation of Shaanxi Province, China
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献