Kinetics and selectivity of methane oxidation on an IrO2(110) film

Author:

Lee Christopher J,Vashishtha Saumye,Shariff Mohammed,Zou Fangrong,Shi Junjie,Meyer Randall J,Weaver Jason FORCID

Abstract

Abstract Undercoordinated, bridging O-atoms (Obr) are highly active as H-acceptors in alkane dehydrogenation on IrO2(110) surfaces but transform to HObr groups that are inactive toward hydrocarbons. The low C-H activity and high stability of the HObr groups cause the kinetics and product selectivity during CH4 oxidation on IrO2(110) to depend sensitively on the availability of Obr atoms prior to the onset of product desorption. From temperature programmed reaction spectroscopy (TPRS) and kinetic simulations, we identified two Obr-coverage regimes that distinguish the kinetics and product formation during CH4 oxidation on IrO2(110). Under excess Obr conditions, when the initial Obr coverage is greater than that needed to oxidize all the CH4 to CO2 and HObr groups, complete CH4 oxidation is dominant and produces CO2 in a single TPRS peak between 450 and 500 K. However, under Obr-limited conditions, nearly all the initial Obr atoms are deactivated by conversion to HObr or abstracted after only a fraction of the initially adsorbed CH4 oxidizes to CO2 and CO below 500 K. Thereafter, some of the excess CHx groups abstract H and desorb as CH4 above ~500 K while the remainder oxidize to CO2 and CO at a rate that is controlled by the rate at which Obr atoms are regenerated from HObr during the formation of CH4 and H2O products. We also show that chemisorbed O-atoms (“on-top O”) on IrO2(110) enhance CO2 production below 500 K by efficiently abstracting H from Obr atoms and thereby increasing the coverage of Obr atoms available to completely oxidize CHx groups at low temperature. Our results provide new insights for understanding factors which govern the kinetics and selectivity during CH4 oxidation on IrO2(110) surfaces.

Funder

Basic Energy Sciences

ExxonMobil Research and Engineering Company

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3