Vitrification is a spontaneous non-equilibrium transition driven by osmotic pressure

Author:

Wang J GalenORCID,Zia Roseanna NORCID

Abstract

Abstract Persistent dynamics in colloidal glasses suggest the existence of a non-equilibrium driving force for structural relaxation during glassy aging. But the implicit assumption in the literature that colloidal glasses form within the metastable state bypasses the search for a driving force for vitrification and glassy aging and its connection with a metastable state. The natural relation of osmotic pressure to number-density gradients motivates us to investigate the osmotic pressure as this driving force. We use dynamic simulation to quench a polydisperse hard-sphere colloidal liquid into the putative glass region while monitoring structural relaxation and osmotic pressure. Following quenches to various depths in volume fraction ϕ (where ϕ RCP ≈ 0.678 for 7% polydispersity), the osmotic pressure overshoots its metastable value, then decreases with age toward the metastable pressure, driving redistribution of coordination number and interparticle voids that smooths structural heterogeneity with age. For quenches to 0.56 ⩽ ϕ ⩽ 0.58, accessible post-quench volume redistributes with age, allowing the glass to relax into a strong supercooled liquid and easily reach a metastable state. At higher volume fractions, 0.59 ⩽ ϕ < 0.64, this redistribution encounters a barrier that is subsequently overcome by osmotic pressure, allowing the system to relax toward the metastable state. But for ϕ ⩾ 0.64, the overshoot is small compared to the high metastable pressure; redistribution of volume stops as particles acquire contacts and get stuck, freezing the system far from the metastable state. Overall, the osmotic pressure drives structural rearrangements responsible for both vitrification and glassy age-relaxation. The connection of energy, pressure, and structure identifies the glass transition, 0.63 < ϕ g ⩽ 0.64. We leverage the connection of osmotic pressure to energy density to put forth the mechanistic view that relaxation of structural heterogeneity in colloidal glasses occurs via individual particle motion driven by osmotic pressure, and is a spontaneous energy minimization process that drives the glass off and back to the metastable state.

Funder

Office of Naval Research Global

National Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference63 articles.

1. Biological glasses: nature’s way to preserve life;Buitink,2000

2. Biological glass fibers: correlation between optical and structural properties;Aizenberg;Proc. Natl Acad. Sci.,2004

3. Biological glass: a strategy to survive desiccation and heat;Jaco Klok;J. Exp. Biol.,2010

4. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity;Parry;Cell,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3