Recombination dynamics and manybody effect of excitons in large-area monolayer MoS2 capped with (111) NiO epitaxial layer

Author:

Mujeeb FaihaORCID,Rana Gourab,Chakrabarti PoulabORCID,Prasad Sahu BhabaniORCID,Jeena Rupa,Datta AnindyaORCID,Dhar SubhabrataORCID

Abstract

Abstract CVD grown monolayer MoS2 films on c-sapphire substrates are vacuum annealed and capped with (111) NiO epitaxial films using pulsed laser deposition technique. Time, energy and polarization resolved optical techniques are used to understand the effect of capping on the excitonic properties of the monolayer MoS2. It has been observed that trion contribution in the photoluminescence (PL) spectra increases after the capping, suggesting an enhancement of electron concentration in the conduction band. This has been attributed to the capping driven reduction of physisorbed air molecules from the sulphur vacancy ( V S ) sites. Note that the air molecules act as passivating agents for the V S -donors. Low temperature polarization resolved PL spectroscopy and ultrafast pump and probe transient absorption spectroscopy (TAS) show an increase of the biexcitonic population in the system after the encapsulation. The TAS study further reveals longer lifetime for both A and B excitons in capped samples implying a reduction of non-radiative recombination rate of the excitons after the capping. It has also been observed that in the capped samples, K / K valleys are populated with trions under sufficiently high pump powers. This has been attributed to the lower non-radiative recombination rates of the high energy photoexcited carriers and the faster transfer of either electrons or holes from the high energy pockets to the K / K valleys. The study further reveals different many-body effects in excitons and trions.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3