Quantifying transfer learning synergies in infinite-layer and perovskite nitrides, oxides, and fluorides

Author:

Sahinovic Armin,Geisler BenjaminORCID

Abstract

Abstract We combine density functional theory simulations and active learning (AL) of element-embedding neural networks (NNs) to explore the sample efficiency for the prediction of vacancy layer formation energies and lattice parameters in ABX n infinite-layer (n = 2) versus perovskite (n = 3) nitrides, oxides, and fluorides in the spirit of transfer learning. Following a comprehensive data analysis from different thermodynamic, structural, and statistical perspectives, we show that NNs model these observables with high precision, using merely 30 % of the data for training and exclusively the A-, B-, and X-site element names as minimal input devoid of any physical a priori information. Element embedding autonomously arranges the chemical elements with a characteristic recurrent topology, such that their relations are consistent with human knowledge. We compare two different embedding strategies and show that these techniques render additional input such as atomic properties negligible. Simultaneously, we demonstrate that AL is largely independent of the initial training set, and exemplify its superiority over randomly composed training sets. Despite their highly distinct chemistry, the present approach successfully identifies fundamental quantum-mechanical universalities between nitrides, oxides, and fluorides that enhance the combined prediction accuracy by up to 16% with respect to three specialized NNs at equivalent numerical effort. This quantification of synergistic effects provides an impression of the transfer learning improvements one may expect for similarly complex materials. Finally, by embedding the tensor product of the B and X sites and subsequent quantitative cluster analysis, we establish from an unbiased artificial-intelligence perspective that oxides and nitrides exhibit significant parallels, whereas fluorides constitute a rather distinct materials class.

Funder

University of Duisburg-Essen

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3