First-principles study of the liquid and amorphous phases of Sb2Te phase change memory material

Author:

Kang LeiORCID,Chen LengORCID

Abstract

Abstract We have investigated the local structure of liquid and amorphous phases of Sb2Te phase change memory material by the means of density functional theory-molecular dynamics simulations. The models of liquid and amorphous states were generated by quenching from the melt. The results show that the local environment of liquid Sb2Te is a mixed bonding geometry, where the average coordination numbers (CNs) of Sb and Te atoms are 4.93 and 4.23, respectively. Compared with crystalline state, there are more Sb–Sb bonds (∼53%) and less Sb–Te bonds (∼42%) with the presence of Te–Te bonds (∼5%) in liquid Sb2Te. Therefore, the formation of homopolar bonds and the breaking of heteropolar bonds are important structural transformations in melt process. For amorphous Sb2Te, the average CNs of Sb and Te atoms are 4.54 and 3.57, respectively. They are mostly in an octahedral environment, similar to the case in crystalline phase. The fractions of Sb–Sb, Te–Te, and Sb–Te bonds are ∼52%, ∼2%, and ∼46%, respectively. Thus, the increase in the fraction of octahedron accompanied with the decrease in average CN is the major structural changes in quenching process. Furthermore, the octahedral geometry in both the crystalline and amorphous Sb2Te increases the local structural similarity, facilitating the rapid low-energy crystallization.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3