Photon diffusion in microscale solids

Author:

Das AvijitORCID,Brown Andrew K,Mah Merlin L,Talghader Joseph J

Abstract

Abstract This paper presents a theoretical and experimental investigation of photon diffusion in highly absorbing microscale graphite. A Nd:YAG continuous wave laser is used to heat the graphite samples with thicknesses of 40 μm and 100 μm. Optical intensities of 10 kW cm−2 and 20 kW cm−2 are used in the laser heating. The graphite samples are heated to temperatures of thousands of kelvins within milliseconds, which are recorded by a 2-color, high speed pyrometer. To compare the observed temperatures, differential equation of heat conduction is solved across the samples with proper initial and boundary conditions. In addition to lattice vibrations, photon diffusion is incorporated in the analytical model of thermal conductivity for solving the heat equation. The numerical simulations showed close matching between experiment and theory only when including the photon diffusion equations and existing material properties data found in the previously published works with no fitting constants. The results indicate that the commonly-overlooked mechanism of photon diffusion dominates the heat transfer of many microscale structures near their evaporation temperatures. In addition, the treatment explains the discrepancies between thermal conductivity measurements and theory that were previously described in the scientific literature.

Funder

Directed Energy Joint Transition Office (DEJTO) and the Office of Naval Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference67 articles.

1. Radiative transfer ia the Earth's mantle

2. Radiative Thermal Conductivity in Planetary Interiors

3. Opacity—the concept of radiative thermal conductivity;Clauser,1988

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3