The dissociation of H2O on the γ-U (110) and (100) surfaces: an ab initio study

Author:

Yang Yue,Zhu Songlin,Xie Minghong,Tian XiaofengORCID

Abstract

Abstract The dissociation of H2O on γ-U (110) and γ-U (100) surfaces has been studied by using ab initio molecular dynamics simulations at an elevated temperature of 800 K. The simulation results show the dissociation of H2O into the OH group and H atom, which are finally adsorbed on the uranium surface. The dissociation results from electronic interactions between surface uranium 6d/5 f states and the s orbitals of H and the 2p orbitals of O. Additionally, the hybridization between the 6d orbital of surface uranium and the 2p orbital of oxygen plays a dominant role in dissociative adsorption. A significant charge transfer from the uranium surface to the O and H atoms is observed, indicating the formation of U–O and U–H chemical bonds. Specifically, for γ-U (110) surface, the most preferred site for OH is the 3-fold hollow site and H occupies the bridge site or the 3-fold hollow site. On the other hand, for γ-U (100) surface, OH prefers to adsorb on the bridge site and H occupies the 3-fold hollow site or the bridge site. Furthermore, when H2O is placed on the TOP site, its initial dissociation on the γ-U (110) surface is easier compared to the γ-U (100) surface.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province, China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3