Abstract
Abstract
We calculate the plasmon frequency ω and damping rate γ of plasma oscillations in a spin-polarized BLG system. Using the long wavelength approximation for dynamical dielectric function, we obtain an analytical expression for plasmon frequency showing that degree of spin polarization P has negligible effect on the long wavelength plasmon frequency. Numerical calculations demonstrate that the plasmon frequency increases (decreases) noticeably (slightly) with the increase in spin polarization in large (small) wave-vector q region. We also find that the damping rate and the shape of γ as a function of q depend strongly on P. The increase in carrier density decreases significantly both plasmon frequency and damping rate independently of the spin polarization. The numerically calculated critical wave vector, at which the plasmon dispersion curve hits the edge of electron–hole continuum, decreases with P and can be used to experimentally determine the degree of spin polarization.
Subject
Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献