Even-odd chain dependent spin valve effect on a zigzag biphenylene nanoribbon junction

Author:

Zhang LinORCID,Tong PeiqingORCID

Abstract

Abstract The even–odd chain dependent spin valve effect was forecasted in some honeycomb graphene-like materials with zigzag edges. In this study, we confirm that the even–odd chain related spin valve phenomenon also exists in a zigzag biphenylene nanoribbon (ZBN) junction. By modeling the ZBN junction with different even and odd chains subjected to a local Rashba spin–orbit coupling (SOC) and a homogeneous magnetic field, we calculate the spin dependent conductance spectra between the source and the drain electrodes and find that the spin up (down) electron can be inhibited (allowed) to flow through the even (odd)-chain ZBN junction, which can be explained by the combined effect between the pseudo-parity conservation and magnetic field-tunable energy gap in the energy band theory. The switch on and off states of spin valve can be modulated by the most system parameters such as the Fermi energy, magnetic flux, and Rashba SOC. Furthermore, the ZBN can act as a gate-tunable spin generator and spin filter, in which we can get 100% polarized spin up (down) electrons with (no) spin-flipping from the even-chain ZBN junction, and only produce 27% polarized spin-converting electrons from the odd-chain ZBN junction. Our findings might be useful in designing future multi-parameter controllable spin valves by using the new carbon allotropes.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Universities of Jiangsu Province, China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3