Functionalized tellurene; a candidate large-gap 2D topological insulator

Author:

Sattigeri Raghottam MORCID,Jha Prafulla KORCID

Abstract

Abstract The discovery of group IV and V elemental xene’s with topologically non-trivial characters in their honeycomb lattice structure (HLS) has led to extensive efforts in realising analogous behaviour in group VI elemental monolayers. Theoretically; it was concluded that, group VI elemental monolayers cannot exist in HLS. However, some recent experimental evidence suggests that group VI elemental monolayers can be realised in HLS. In this letter, we report HLS of group VI elemental monolayer (such as, tellurene) can be realised to be dynamically stable when functionzalised with oxygen. The functionalization leads to, peculiar orbital filtering effects and broken spatial inversion symmetry which gives rise to the non-trivial topological character. The exotic quantum behaviour of this system is characterized by, spin–orbit coupling induced large-gap (≈0.36 eV) with isolated Dirac cone along the edges indicating potential room temperature spin-transport applications. Further investigations of spin Hall conductivity and the Berry curvatures unravel high conductivity as compared to previously explored xene’s alongside the potential valley Hall effects. The non-trivial topological character is quantified in terms of the Z 2 invariant as ν = 1 and Chern number C = 1. Also, for practical purposes, we report that, hBN/TeO/hBN quantum-wells can be strain engineered to realize a sizeable non-trivial gap (≈0.11 eV). We finally conclude that, functionalization of group VI elemental monolayer with oxygen gives rise to, exotic quantum properties which are robust against surface oxidation and degradations while providing viable electronic degrees of freedom for spintronic/valleytronic applications.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3