Emergence of magnetic anisotropy by surface adsorption of transition metal dimers on γ-graphyne framework

Author:

Jana Susmita,Chowdhury SumanORCID,Jana DebnarayanORCID,Chakrabarti AparnaORCID,Banerjee Arup

Abstract

Abstract In this paper a systematic study is carried out to demonstrate the structural stability and magnetic novelty of adsorbing transition metal (TM) dimers (A-B) on graphyne (GY) surface, GY@A-B. Our research points out that the dimers are strongly adsorbed onto GY due to their large natural pores and the electron affinity of the sp-hybridized carbon atoms. Electronic properties of these dimer-graphyne composite systems are of particular importance as they behave as degenerate semiconductors with partial occupation of states at E F. Furthermore, their remarkable spin polarization (>80%) at Fermi energy (E F) can be of paramount importance in spintronics applications. Most of the GY@A-B structures exhibit large magnetic anisotropies as well as magnetic moments along the out-of-plane direction with respect to the GY surface. Particularly, GY@Co–Ir, GY@Ir–Ir and GY@Ir–Os structures possess positive magnetic anisotropic energies (MAE) of 121 meV, 81 meV and 137 meV, respectively, which are comparable to other well-known TM dimer doped systems. The emergence of high MAE can be understood using the second-order perturbation theory on the basis of the strong spin–orbit coupling (SOC) between the two TMs and the degeneracy of their d-orbitals near E F. A close correspondence between the simulated and the analytical results has been established through our work. Further, a simple estimation shows that, GY@A-B structures have the potential to store data up to 64 PB m−2. These intriguing electronic characteristics along with magnetism suggest GY@A-B to be a promising material for future magnetic storage devices.

Funder

Swami Vivekananda Fellowship, Govt. of West Bengal

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference82 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3