Random-walk model of the sodium-glucose transporter SGLT2 with stochastic steps and inhibition

Author:

Barreto Yan B,Alencar Adriano MORCID

Abstract

Abstract Random-walk models are frequently used to model distinct natural phenomena such as diffusion processes, stock-market fluctuations, and biological systems. Here, we present a random-walk model to describe the dynamics of glucose uptake by the sodium-glucose transporter of type 2, SGLT2. Our starting point is the canonical alternating-access model, which suggests the existence of six states for the transport cycle. We propose the inclusion of two new states to this canonical model. The first state is added to implement the recent discovery that the Na+ ion can exit before the sugar is released into the proximal tubule epithelial cells. The resulting model is a seven-state mechanism with stochastic steps. Then we determined the transition probabilities between these seven states and used them to write a set of master equations to describe the time evolution of the system. We showed that our model converges to the expected equilibrium configuration and that the binding of Na+ and glucose to SGLT2 in the inward-facing conformation must be necessarily unordered. After that, we added another state to implement inhibition in the model. Our results reproduce the experimental dependence of glucose uptake on the inhibitor concentration and they reveal that the inhibitors act by decreasing the number of available SGLT2s, which increases the chances of glucose escaping reabsorption.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue on soft matter research in Latin America;Journal of Physics: Condensed Matter;2023-07-14

2. The sugar daddy: the role of the renal proximal tubule in glucose homeostasis;American Journal of Physiology-Cell Physiology;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3