Structural stabilities and natural half-metallic properties of OsXCoSi (X=Ti, Zr, Hf) quaternary Heusler alloys series first-principles calculations

Author:

Huang Wen-ChaoORCID,Li Xue-Song,Wang Xiao-Fang,Li Yun-Xia

Abstract

Abstract Based on first-principles calculation of density functional theory, this study investigates the structural stability, magnetic properties, and electronic properties of the three different phases (i.e. type 1, type 2, and type 3) of OsXCoSi (X=Ti, Zr, Hf) in a new quaternary Heusler alloy series. The corresponding equilibrium lattice constants of each type are optimized, and the change of formation enthalpy and elastic constant phonon spectrum show that the OsXCoSi (X=Ti, Zr, Hf) alloy is thermodynamically, dynamically and mechanically stable. Furthermore, the bonding features of each phase are discussed. It is found that all type 1 structures of OsXCoSi (X=Ti, Zr, Hf) exhibit natural half-metallicity (HM) in equilibrium lattice constant, and their equilibrium lattice constants in the ground state were determined to be 5.909 Å for OsTiCoSi, 6.155 Å for OsZrCoSi, and 6.100 Å for OsHfCoSi. Meanwhile, by testing the alloy under different pressures, the range of the integer magnetic moment non-equilibrium lattice constants for the three alloys OsTiCoSi, OsZrCoSi, and OsHfCoSi are 5.710 Å ∼ 6.329 Å, 5.696 Å ∼ 6.1557 Å and 5.716 Å ∼6.1009 Å, respectively, which is wide and is more close to the practical application for spin-polarized materials. In addition, its magnetic moment is consistent with the values given by the Slater–Pauling rule. Furthermore, the forming of the HM gap is examined by analysing the total and partial density of states, energy bands of alloy’s electronic property, with respect to the calculated results. What’s more, special attention is paid to the differences of the properties for series Heusler alloys. It is found that the electronics properties distinction is mainly based on valence electron changes. However, the lattice constants are susceptible to size of a nucleus.

Funder

University and Lanzhou City Science and Technology Plan Project

National Natural Science Foundation of China

Youth Talent Lift Program of Lanzhou Jiao

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3