Machine-learned model Hamiltonian and strength of spin–orbit interaction in strained Mg2X (X = Si, Ge, Sn, Pb)

Author:

Alidoust MohammadORCID,Rothmund Erling,Akola Jaakko

Abstract

Abstract Machine-learned multi-orbital tight-binding (MMTB) Hamiltonian models have been developed to describe the electronic characteristics of intermetallic compounds Mg2Si, Mg2Ge, Mg2Sn, and Mg2Pb subject to strain. The MMTB models incorporate spin–orbital mediated interactions and they are calibrated to the electronic band structures calculated via density functional theory by a massively parallelized multi-dimensional Monte-Carlo search algorithm. The results show that a machine-learned five-band tight-binding (TB) model reproduces the key aspects of the valence band structures in the entire Brillouin zone. The five-band model reveals that compressive strain localizes the contribution of the 3s orbital of Mg to the conduction bands and the outer shell p orbitals of X (X = Si, Ge, Sn, Pb) to the valence bands. In contrast, tensile strain has a reversed effect as it weakens the contribution of the 3s orbital of Mg and the outer shell p orbitals of X to the conduction bands and valence bands, respectively. The π bonding in the Mg2X compounds is negligible compared to the σ bonding components, which follow the hierarchy | σ s p | > | σ p p | > | σ s s | , and the largest variation against strain belongs to σ pp . The five-band model allows for estimating the strength of spin–orbit coupling (SOC) in Mg2X and obtaining its dependence on the atomic number of X and strain. Further, the band structure calculations demonstrate a significant band gap tuning and band splitting due to strain. A compressive strain of 10 % can open a band gap at the Γ point in metallic Mg2Pb, whereas a tensile strain of + 10 % closes the semiconducting band gap of Mg2Si. A tensile strain of + 5 % removes the three-fold degeneracy of valence bands at the Γ point in semiconducting Mg2Ge. The presented MMTB models can be extended for various materials and simulations (band structure, transport, classical molecular dynamics), and the obtained results can help in designing devices made of Mg2X.

Funder

Financial support from the NTNU Digital Transformation program (Norway) for the project ALLDESIGN

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3