Enhancement of H2S sensing performance of rGO decorated CuO thin films: experimental and DFT studies

Author:

Kumar Sumit,Chaurasiya RajneeshORCID,Khan Mustaque A,Meng GangORCID,Chen Jen-SueORCID,Kumar MaheshORCID

Abstract

Abstract We demonstrate a highly selective and sensitive Cupric oxide (CuO) thin film-based low concentration Hydrogen sulfide (H2S) sensor. The sensitivity was improved around three times by decorating with reduced graphene oxide (rGO) nanosheets. CuO thin films were deposited by Chemical Vapor Deposition followed by inter-digital electrode fabrication by a thermal evaporations system. The crystal structure of CuO was confirmed by x-ray diffraction. The sensing response of pristine CuO was found around 54% at 100 °C to 100 ppm of H2S. In contrast, the sensing response was enhanced to 167% by decorating with rGO of 1.5 mg ml−1 concentration solution. The sensing was improved due to the formation of heterojunctions between the rGO and CuO. The developed sensor was examined under various gas environments and found to be highly selective towards H2S gas. The improvement in sensing response has been attributed to increased hole concentration in CuO in the presence of rGO due to the Fermi level alignment and increased absorption of H2S molecules at the rGO/CuO heterojunction. Further, electronic structure calculations show the physisorption behavior of H2S molecules on the different adsorption sites. Detailed insight into the gas sensing mechanism is discussed based on experimental results and electronic structure calculations.

Funder

Science and Engineering Research Board

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3