Electrokinetic separation of cfDNA in insulator-based dielectrophoresis systems: a linear model of cfDNA and investigation of effective parameters

Author:

Abdollahi Azita,Shokouhmand HosseinORCID

Abstract

Abstract In this study, a comprehensive numerical simulation was done to investigate the electrokinetic translocation of cfDNA molecule as well as the possibility of its detection and separation in insulator based dielectrophoresis (iDEP) systems. Modeling was done for the first time by solving the Poisson equation for the electrical potential, Naiver–Stokes (NS) equation for the fluid flow and energy equation for the heat transfer in the system and considering a coarse-grained bead-spring model to describe the conformational and geometrical changes of cfDNA molecule. The effect of the geometrical parameters of the system, the initial orientation of the molecule, electrical conductivity of the solution and zeta potential of the wall was investigated on the translocation and the minimum voltage required for cfDNA trapping. When the ratio of the inlet height to the constriction zone height is large enough, cfDNA molecules cannot pass through the nanopore and trap in the constriction zone. Also, it was found that the electrical conductivity of the solution is a limiting parameter to directly isolate cfDNA from pure plasma without dilution due to significant increase in the temperature of the system. Our results demonstrate the enormous potential of iDEP systems for rapid detection of cfDNA from diluted plasma under special electrical potential and geometrical parameters of the iDEP systems.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3