Electric-field-generated topological states in a silicene nanotube

Author:

Cassiano J V V,Martins G BORCID

Abstract

Abstract Applying an electric field perpendicular to the axis of a silicene armchair nanotube allows us to numerically study the formation of eight topological edge states as silicene’s intrinsic spin–orbit gap is closed by the sublattice-staggered electrostatic potential created by the electric field. Following their evolution with electric field, it is revealed that, at very small fields, these eight states are very broad, spin-locked, and sublattice constrained, inheriting their properties from the K and K′ states in a silicene two-dimensional honeycomb lattice. Four of those states are centered at the very top of the nanotube and the other four states are centered at the very bottom. As the field increases, each state starts to become narrower and to spread its spectral weight to the other sublattice. With further increase of the field, each state starts to spatially split, while the sublattice spreading continues. Once the spectral weight of each state is distributed evenly among both sublattices, the state has also effectively split into two spatially disconnected parts, after which, further increasing of the field will spread apart the two halves, moving them to the lateral regions of the nanotube, at the same time that the state halves become narrower. This is consistent with the formation of topological edge states, which delimit four ribbon-like topologically different regions: top and bottom topologically trivial ‘ribbons’ (where the electric field has induced a topological phase transition) that are adjacent to two topologically nontrivial ‘ribbons’ located at opposing sides of the nanotube. We also briefly access the possibility of observing these edge states by calculating the electronic properties for an electric field configuration that can be more readily produced in the laboratory.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3