Defective ZrSe2: a promising candidate for spintronics applications

Author:

Kheirabadi Sharieh JamalzadehORCID,Behzadi Fahimeh,Gity FarzanORCID,Hurley Paul K,Khorrami Soroush Karimi,Behroozi Mohammadreza,Sanaee Maryam,Ansari LidaORCID

Abstract

Abstract The current study presents the electronic and magnetic properties of monolayer ZrSe2 nanoribbons. The impact of various point defects in the form of Zr or Se vacancies, and their combinations, on the nanoribbon electronic and magnetic properties are investigated using density functional theory calculations in hydrogen-terminated zigzag and armchair ZrSe2 nanoribbons. Although pristine ZrSe2 is non-magnetic, all the defective ZrSe2 structures exhibit ferromagnetic behavior. Our calculated results also show that the Zr and Se vacancy defects alter the total spin magnetic moment with D6Se, leading to a significant amount of 6.34 µB in the zigzag nanoribbon, while the largest magnetic moment of 5.52 µB is induced by D2Se−2 in the armchair structure, with the spin density predominantly distributed around the Zr atoms near the defect sites. Further, the impact of defects on the performance of the ZrSe2 nanoribbon-based devices is investigated. Our carrier transport calculations reveal spin-polarized current-voltage characteristics for both the zigzag and armchair devices, revealing negative differential resistance (NDR) feature. Moreover, the current level in the zigzag-based nanoribbon devices is ∼10 times higher than the armchair devices, while the peak-to-valley ratio is more pronounced in the armchair-based nanoribbon devices. It is also noted that defects increase the current level in the zigzag devices while they lead to multiple NDR peaks with rather negligible change in the current level in the armchair devices. Our results on the defective ZrSe2 structures, as opposed to the pristine ones that are previously studied, provide insight into ZrSe2 material and device properties as a promising nanomaterial for spintronics applications and can be considered as practical guidance to experimental work.

Funder

Fasa University for providing computing facilities

SFI AMBER

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3