Threshold temperature of superfluorescence generation in CuCl quantum dots under resonant excitation of excitons and resonant two-photon excitation of biexcitons

Author:

Kawamura Kohei,Yoshida Tomoharu,Ishihara JunORCID,Ishikawa Akira,Miyajima KensukeORCID

Abstract

Abstract We studied the threshold temperature of superfluorescence (SF) generation with regard to biexcitons in CuCl quantum dots (QDs) under resonant two-photon excitation of biexcitons and resonant excitation of excitons to demonstrate the influence of initial population densities in the QDs on SF generation. As a result, the threshold temperature under the resonant excitation of excitons was higher than that under the two-photon excitation of biexcitons. This indicates that the high density of excited dots facilitates the rapid establishment of coherence among the dots, overcoming disadvantages of incomplete population inversion and formation process of biexcitons. We performed a theoretical calculation of the time profiles of the biexcitonic emission based on semiconductor luminescence equations. The experimentally obtained temperature dependence of the time profiles was qualitatively reproduced by calculating their dependence on the dephasing rate. In addition, we estimated the temperature dependence of the phase relaxation time of the biexcitons in the CuCl QDs by analyzing the temperature dependence of SF.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3